论文标题

部分可观测时空混沌系统的无模型预测

Improved decoding of circuit noise and fragile boundaries of tailored surface codes

论文作者

Higgott, Oscar, Bohdanowicz, Thomas C., Kubica, Aleksander, Flammia, Steven T., Campbell, Earl T.

论文摘要

意识到量子计算的全部潜力需要量子误差校正(QEC),最新的QEC使用表面代码进行了突破。 QEC代码使用多个嘈杂的物理Qubits以更少的逻辑Qubits编码信息,从而可以通过解码过程识别错误。这个过程增加了逻辑保真度(或准确性),从而使计算更可靠。但是,大多数快速(高效的运行时)解码器忽略了重要的噪声特性,从而降低了其准确性。在这项工作中,我们介绍了既快速,准确的解码器'',可以与包括表面代码在内的QEC代码进行的宽类QEC代码一起使用。我们的解码器(称为信仰匹配和信念),利用所有噪声信息,从而释放了QEC的更高精度演示。使用表面代码阈值作为性能指标,我们观察到我们的解码器的阈值以0.94 \%的误差概率,表现优于0.82 \%的阈值,对于标准的最小重量完美匹配解码器而言。我们还在针对有偏见噪声模型的代码的理论案例研究中测试了我们的信仰匹配解码器。我们发现,相对于标准的平方表面代码,解码器导致了更高的阈值和较低的量子空间。出乎意料的是,在良好的阈值方案中,由于我们称之为“脆弱边界”的现象,矩形表面代码比量身定制的表面代码变得比量身定制的表面代码更高。在阈值和准确性方面,我们的解码器的表现优于所有其他快速解码器,从而在当前的量子误差校正实验中获得了更好的结果,并为理论案例研究打开了新领域。

Realizing the full potential of quantum computation requires quantum error correction (QEC), with most recent breakthrough demonstrations of QEC using the surface code. QEC codes use multiple noisy physical qubits to encode information in fewer logical qubits, enabling the identification of errors through a decoding process. This process increases the logical fidelity (or accuracy) making the computation more reliable. However, most fast (efficient runtime) decoders neglect important noise characteristics, thereby reducing their accuracy. In this work, we introduce decoders that are both fast and accurate, and can be used with a wide class of QEC codes including the surface code. Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC. Using the surface code threshold as a performance metric, we observe a threshold at 0.94\% error probability for our decoders, outperforming the 0.82\% threshold for a standard minimum-weight perfect matching decoder. We also tested our belief-matching decoders in a theoretical case study of codes tailored to a biased noise model. We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code. Surprisingly, in the well-below threshold regime, the rectangular surface code becomes more resource-efficient than the tailored surface code, due to a previously unnoticed phenomenon that we call "fragile boundaries". Our decoders outperform all other fast decoders in terms of threshold and accuracy, enabling better results in current quantum error correction experiments and opening up new areas for theoretical case studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源