论文标题

理想电化学界面处的界面水不对称

Interfacial water asymmetry at ideal electrochemical interfaces

论文作者

Shandilya, Abhishek, Schwarz, Kathleen, Sundararaman, Ravishankar

论文摘要

控制电化学反应性需要详细了解电化学界面的充电行为和热力学。实验可以通过电容测量值独立探测电化学双层的总体电荷响应,并具有最大熵(PME)测量的潜在的内层的热力学。迄今为止,由于电容的经典分子动力学(MD)以及\ emph {ab intio} MD的有限时间和长度尺度(AIMD),通过电化学界面的计算建模与电化学界面的计算建模相关。在这里,我们将长期尺度古典MD模拟的大型集合与电子密度功能理论(DFT)的电荷响应相结合,以预测具有不同峰值电容的理想水性电化学界面家族的潜在依赖性电容。我们表明,尽管最大电容的潜力各不相同,但整个家庭在-3.7 $ $ $ c/cm $^2 $和-3.3 $ $ C/cm $^2 $之间表现出最大电容(CMC)的电极费用,而不管电子响应中的详细信息。相同接口的模拟加热表明,熵峰值的最大熵(CME)为$ -6.4 \ pm 0.7〜μ $ C/cm $^2 $,与金属电极的实验结果一致。 CME和CMC都表明界面水的不对称反应,对于带负电的电极而言更强,而CME和CMC之间的差异说明了甚至理想的电化学界面的行为丰富度。

Controlling electrochemical reactivity requires a detailed understanding of the charging behavior and thermodynamics of the electrochemical interface. Experiments can independently probe the overall charge response of the electrochemical double layer by capacitance measurements, and the thermodynamics of the inner layer with potential of maximum entropy (PME) measurements. Relating these properties by computational modeling of the electrochemical interface has so far been challenging due to the low accuracy of classical molecular dynamics (MD) for capacitance and the limited time and length scales of \emph{ab initio} MD (AIMD). Here, we combine large ensembles of long-time-scale classical MD simulations with charge response from electronic density functional theory (DFT) to predict the potential-dependent capacitance of a family of ideal aqueous electrochemical interfaces with different peak capacitances. We show that, while the potential of maximum capacitance varies, this entire family exhibits an electrode charge of maximum capacitance (CMC) between -3.7 $μ$C/cm$^2$ and -3.3 $μ$C/cm$^2$, regardless of details in the electronic response. Simulated heating of the same interfaces reveals that the entropy peaks at a charge of maximum entropy (CME) of $-6.4 \pm 0.7~μ$C/cm$^2$, in agreement with experimental findings for metallic electrodes. The CME and CMC both indicate asymmetric response of interfacial water that is stronger for negatively charged electrodes, while the difference between CME and CMC illustrates the richness in behavior of even the ideal electrochemical interface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源