论文标题

VGQ-CNN:超越固定摄像机和顶级抓取质量预测

VGQ-CNN: Moving Beyond Fixed Cameras and Top-Grasps for Grasp Quality Prediction

论文作者

Konrad, A., McDonald, J., Villing, R.

论文摘要

我们介绍了多功能的掌握质量卷积神经网络(VGQ-CNN),这是一个用于6-DOF GRASP的掌握质量预测网络。 VGQ-CNN在评估grasps的对象时可以使用VGQ-CNN,而无需重新训练网络。通过明确定义GRASP方向作为网络的输入,VGQ-CNN可以评估6-DOF抓取姿势,超越了大多数基于图像的GRASP评估方法(如GQ-CNN)中使用的4-DOF GRASP。为了训练VGQ-CNN,我们生成了新的Versatile Grasp数据集(VG-DSET),其中包含从各种相机姿势中观察到的6-DOF GRASP。 VGQ-CNN在我们的测试分段中达到了82.1%的平衡精度,同时将其推广到各种相机姿势。同时,与GQ-CNN的76.6%相比,它以74.2%的均衡精度达到了高架摄像机和顶级摄像机的竞争性能。我们还提出了一个修改的网络体系结构快速VGQ-CNN,该网络架构使用共享的编码器体系结构加快推理,并可以在CPU上进行128个掌握质量预测。代码和数据可在https://aucoroboticsmu.github.io/vgq-cnn/上找到。

We present the Versatile Grasp Quality Convolutional Neural Network (VGQ-CNN), a grasp quality prediction network for 6-DOF grasps. VGQ-CNN can be used when evaluating grasps for objects seen from a wide range of camera poses or mobile robots without the need to retrain the network. By defining the grasp orientation explicitly as an input to the network, VGQ-CNN can evaluate 6-DOF grasp poses, moving beyond the 4-DOF grasps used in most image-based grasp evaluation methods like GQ-CNN. To train VGQ-CNN, we generate the new Versatile Grasp dataset (VG-dset) containing 6-DOF grasps observed from a wide range of camera poses. VGQ-CNN achieves a balanced accuracy of 82.1% on our test-split while generalising to a variety of camera poses. Meanwhile, it achieves competitive performance for overhead cameras and top-grasps with a balanced accuracy of 74.2% compared to GQ-CNN's 76.6%. We also propose a modified network architecture, FAST-VGQ-CNN, that speeds up inference using a shared encoder architecture and can make 128 grasp quality predictions in 12ms on a CPU. Code and data are available at https://aucoroboticsmu.github.io/vgq-cnn/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源