论文标题
费米子多体系统中复杂性和纠缠的度量
Measures of complexity and entanglement in fermionic many-body systems
论文作者
论文摘要
在存在相互作用的情况下,没有独特的且广泛接受的定义。最简单的多屈光度波函数是一个基本决定因素。在壳模型或配置相互作用(CI)和其他相关方法中,该状态表示为大量Slater决定因素的叠加,如果CI计算达到约200亿。尽管实际上,该数字已被用作CM数十年,但它的定义不明:它不是唯一的,它取决于特定类型和用于构建Slater决定因素的单粒子波函数的数量。 规范波函数/自然轨道及其相应的职业概率是任何多体波函数的内在特性,无论表示如何,它们提供了一个独特的解决方案来表征CM。对于Slater决定因素而消失的非阴性轨道纠缠熵提供了最简单的CM,而更完整的复杂性度量是纠缠频谱。我们说明了这些方面在一个复杂的非平衡时间依赖性过程的情况下,这些过程诱发了扩展到超流体系统的实时密度功能理论框架中描述的核裂变,该框架可以同时描述速度之间的远距离和短距离相关性。
There is no unique and widely accepted definition of the complexity measure (CM) of a many-fermion wave function in the presence of interactions. The simplest many-fermion wave function is a Slater determinant. In shell-model or configuration interaction (CI) and other related methods, the state is represented as a superposition of a large number of Slater determinants, which in case of CI calculations reaches about 20 billion terms. Although in practice this number has been used as a CM for decades, it is ill defined: it is not unique, and it depends on the particular type and the number of single-particle wave functions used to construct the Slater determinants. The canonical wave functions/natural orbitals and their corresponding occupation probabilities are intrinsic properties of any many-body wave function, irrespective of the representation, and they provide a unique solution to characterize the CM. The non-negative orbital entanglement entropy, which vanishes for a Slater determinant, provides the simplest CM, while a more complete measure of complexity is the entanglement spectrum. We illustrate these aspects in the case of a complex non-equilibrium time-dependent process, induced nuclear fission described within a real-time Density Functional Theory framework extended to superfluid systems, which can describe simultaneously the long-range and the short range correlations between fermions.