论文标题
从分层潜在语言的演示中学习一次
One-Shot Learning from a Demonstration with Hierarchical Latent Language
论文作者
论文摘要
人类具有其语言表达性构成的能力,可以通过演示快速学习。他们能够描述看不见的任务绩效过程,并将其执行概括为其他上下文。在这项工作中,我们介绍了DecucteWorld,该环境旨在测试基于基础的代理中的这种泛化技能,其中任务在语言和程序上由基本概念组成。代理在类似于我的网格世界中观察到一个任务演示,然后被要求在新地图中执行相同的任务。为了实现这样的概括,我们提出了一种注入层次潜在语言的神经药物 - 在任务推论和子任务计划的水平上。我们的代理商首先生成了所见未有的任务的文本描述,然后利用此描述复制它。通过多种评估方案和一系列概括测试,我们发现在随机分配任务下,可以更好地应对挑战的代理。
Humans have the capability, aided by the expressive compositionality of their language, to learn quickly by demonstration. They are able to describe unseen task-performing procedures and generalize their execution to other contexts. In this work, we introduce DescribeWorld, an environment designed to test this sort of generalization skill in grounded agents, where tasks are linguistically and procedurally composed of elementary concepts. The agent observes a single task demonstration in a Minecraft-like grid world, and is then asked to carry out the same task in a new map. To enable such a level of generalization, we propose a neural agent infused with hierarchical latent language--both at the level of task inference and subtask planning. Our agent first generates a textual description of the demonstrated unseen task, then leverages this description to replicate it. Through multiple evaluation scenarios and a suite of generalization tests, we find that agents that perform text-based inference are better equipped for the challenge under a random split of tasks.