论文标题

来自时间依赖性密度功能理论

Magnons in antiferromagnetic bcc-Cr and Cr$_2$O$_3$ from time-dependent density functional theory

论文作者

Skovhus, Thorbjørn, Olsen, Thomas

论文摘要

我们应用时间依赖性密度功能理论来计算BCC-CR和Cr $ _2 $ o $ $ _3 $的横向磁敏感性,该概述分别构成了具有巡回和局部磁矩的抗fiferromagnets的原型示例。为了强制执行戈德石条件,对交换相关内核进行了重新缩放,并根据依赖于广义的ONSAGER关系的对称分析提取镁分散关系。这样做,我们的计算产生了在长波长极限下的抗铁磁体的特征线性镁分散体。对于Cr $ _2 $ o $ _3 $,我们发现绝热的局部密度近似与测量的分散体产生了良好的定性协议,但高估了镁速度和带宽两个因子。包括哈伯德校正可以提高磁杆速度,但以与实验镁分散剂的总体定性一致为代价。对于BCC-CR,我们在低能能下找到了尖锐的声镁模式,速度与先前报道的值一致。在较高的能量下,声镁模式会受到强烈阻尼的影响,一旦进入石膏连续体,就会迅速消失。除了声音镁模式外,我们还沿着$γ\ rightarrow \ mathrm {r} $方向观察到一个额外的集体模式,其能量为$ \ sim $ 1 ev,该$ \ sim $ 1 eV位于stoner continuum内部,但似乎揭示了Landau Damping的效果。

We apply time-dependent density functional theory to calculate the transverse magnetic susceptibility of bcc-Cr and Cr$_2$O$_3$, which constitute prototypical examples of antiferromagnets with itinerant and localized magnetic moments respectively. The exchange-correlation kernel is rescaled in order to enforce the Goldstone condition and the magnon dispersion relations are extracted based on a symmetry analysis relying on the generalized Onsager relation. Doing so, our calculations yield the characteristic linear magnon dispersion of antiferromagnets in the long wavelength limit. In the case of Cr$_2$O$_3$, we find that the adiabatic local density approximation yields a good qualitative agreement with the measured dispersion, but overestimates the magnon velocity and bandwidth by a factor of two. Including a Hubbard correction improves the magnon velocity, but at the expense of the overall qualitative agreement with the experimental magnon dispersion. For bcc-Cr we find a sharp acoustic magnon mode at low energies with a velocity in agreement with previously reported values. At higher energies, the acoustic magnon mode becomes subject to strong Landau damping and rapidly vanishes once it enters the Stoner continuum. In addition to the acoustic magnon mode, we also observe an additional collective mode along the $Γ\rightarrow\mathrm{R}$ direction with an energy of $\sim$ 1 eV, which is located inside the Stoner continuum, but appears to elude the effect of Landau damping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源