论文标题
S-1吸收的主要子模型
S-1-absorbing primary submodules
论文作者
论文摘要
在这项工作中,我们介绍了$ s $ -1 $ -1的主要子模块的概念,作为1-消耗性的主要子模块的扩展。令$ s $为环$ r $的多个封闭子集,而$ m $是$ r $ - 模块。 $(n:_ {r} m)$ m $的subpodule $ n $ n $ n $ n $ n:_ {r} m)\ cap s = \ emptySet $,如果每当$ abm \ in n $ in n $ in n $ in n n $ in n nonunit $ a,in r $ in r $ in r $ in r $,则是m $,然后是$ s $ sm sm sm sm sm sm sm sm} n: m $-$ rad(n)$。我们检查了此概念的几个属性,并提供了一些特征。此外,还提出了$ -1 $ -1的主要回避定理和$ S $ -1的$ -1吸收原理,以进行理想化和合并。
In this work, we introduce the notion of $S$-1-absorbing primary submodule as an extension of 1-absorbing primary submodule. Let $S$ be a multiplicatively closed subset of a ring $R$ and $M$ be an $R$-module. A submodule $N$ of $M$ with $(N:_{R}M)\cap S=\emptyset$ is said to be $S$-1-absorbing primary if whenever $abm\in N$ for some non-unit $a,b\in R$ and $m\in M$, then either $sab\in(N:_{R}M)$ or $sm\in M$-$rad(N)$. We examine several properties of this concept and provide some characterizations. In addition, $S$-1-absorbing primary avoidance theorem and $S $-1-absorbing primary property for idealization and amalgamation are presented.