论文标题

Sparsechem:小分子的快速准确的机器学习模型

SparseChem: Fast and accurate machine learning model for small molecules

论文作者

Arany, Adam, Simm, Jaak, Oldenhof, Martijn, Moreau, Yves

论文摘要

Sparsechem为生化应用提供快速准确的机器学习模型。尤其是,该软件包支持非常高的稀疏输入,例如数百万个功能和数百万个化合物。可以训练分类,回归和审查回归模型,或者是从命令行组合的。此外,可以直接从Python访问库。源代码和文档可根据MIT许可在GitHub上免费获得。

SparseChem provides fast and accurate machine learning models for biochemical applications. Especially, the package supports very high-dimensional sparse inputs, e.g., millions of features and millions of compounds. It is possible to train classification, regression and censored regression models, or combination of them from command line. Additionally, the library can be accessed directly from Python. Source code and documentation is freely available under MIT License on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源