论文标题
部分可观测时空混沌系统的无模型预测
A Castelnuovo-Mumford regularity bound for threefolds with rational singularities
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The purpose of this paper is to establish a Castelnuovo-Mumford regularity bound for threefolds with mild singularities. Let $X$ be a non-degenerate normal projective threefold in $\mathbb{P}^r$ of degree $d$ and codimension $e$. We prove that if $X$ has rational singularities, then $\text{reg}(X) \leq d-e+2$. Our bound is very close to a sharp bound conjectured by Eisenbud-Goto. When $e=2$ and $X$ has Cohen-Macaulay Du Bois singularities, we obtain the conjectured bound $\text{reg}(X) \leq d-1$, and we also classify the extremal cases. To achieve these results, we bound the regularity of fibers of a generic projection of $X$ by using Loewy length, and also bound the dimension of the varieties swept out by secant lines through the singular locus of $X$.