论文标题

几个标记样品的主动自我监督学习

Active Self-Semi-Supervised Learning for Few Labeled Samples

论文作者

Wen, Ziting, Pizarro, Oscar, Williams, Stefan

论文摘要

当应用于不同的实践领域时,培训有限注释的深层模型会构成重大挑战。与自我监督模型一起使用半监督的学习提供了提高标签效率的潜力。但是,这种方法在减少对标签的需求方面面临瓶颈。我们观察到,只有有限的标签可用时,半监督的模型会破坏自我监督学习的有价值信息。为了解决这个问题,本文提出了一个简单而有效的框架,积极的自我监督学习(AS3L)。 AS3L引导带有先前的伪标签(PPL)的半监督模型。这些PPL是通过标签传播在自我监督的特征上获得的。基于观察结果,PPL的准确性不仅受特征质量的影响,而且还受标记样品的选择。我们开发积极的学习和标记传播策略以获得准确的PPL。因此,在注释有限的情况下,我们的框架可以显着提高模型的性能,同时证明快速收敛。在四个数据集的图像分类任务上,我们的方法的表现平均比基线的5.4 \%。此外,它在训练时间的约1/3中达到了与基线方法相同的精度。

Training deep models with limited annotations poses a significant challenge when applied to diverse practical domains. Employing semi-supervised learning alongside the self-supervised model offers the potential to enhance label efficiency. However, this approach faces a bottleneck in reducing the need for labels. We observed that the semi-supervised model disrupts valuable information from self-supervised learning when only limited labels are available. To address this issue, this paper proposes a simple yet effective framework, active self-semi-supervised learning (AS3L). AS3L bootstraps semi-supervised models with prior pseudo-labels (PPL). These PPLs are obtained by label propagation over self-supervised features. Based on the observations the accuracy of PPL is not only affected by the quality of features but also by the selection of the labeled samples. We develop active learning and label propagation strategies to obtain accurate PPL. Consequently, our framework can significantly improve the performance of models in the case of limited annotations while demonstrating fast convergence. On the image classification tasks across four datasets, our method outperforms the baseline by an average of 5.4\%. Additionally, it achieves the same accuracy as the baseline method in about 1/3 of the training time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源