论文标题

无细胞分布式MIMO系统中单播和多群多播的光谱效率

Spectral Efficiency of Unicast and Multigroup Multicast Transmission in Cell-free Distributed Massive MIMO Systems

论文作者

Li, Jiamin, Pan, Qijun, Wu, Zhenggang, Zhu, Pengcheng, Wang, Dongming, You, Xiaohu

论文摘要

在本文中,我们考虑了一个联合单播和多组多播的无细胞分布式分布式大量多输入多输出(MIMO)系统,同时考虑了基于共同分配策略的渠道估计,试点污染和不同的预编码方案。在“共同运动”策略下,我们得出了对单播和多播用户的最小均值误差(MMSE)通道状态信息(CSI)估计。鉴于获得的CSI,得出了可实现的下行链路可实现速率的闭合形式表达式,并得出了最大比率传输(MRT),零福利(ZF)和MMSE波束形成。基于这些表达式,我们通过在最大化多播用户的最低频谱效率(SE)和最大化非主导分类遗传算法II(NSGA-II)的Unicast用户的平均SE(NSGA-II)之间提出了有效的功率分配方案。此外,MOOP转化为深度学习(DL)问题,并通过一种无监督的学习方法来解决,以进一步促进计算效率。数值结果验证了派生的闭合形式表达式的准确性,以及在无细胞分布式大型MIMO系统中联合单播和多群多播透射方案的有效性。在各种系统参数下的SE分析以及这两个相互矛盾的优化目标之间的权衡区域为系统优化提供了许多灵活性。

In this paper, we consider a joint unicast and multi-group multicast cell-free distributed massive multiple-input multiple-output (MIMO) system, while accounting for co-pilot assignment strategy based channel estimation, pilot contamination and different precoding schemes. Under the co-pilot assignment strategy, we derive the minimum-mean-square error (MMSE) channel state information (CSI) estimation for unicast and multicast users. Given the acquired CSI, the closed-form expressions for downlink achievable rates with maximum ratio transmission (MRT), zero-forcing (ZF) and MMSE beamforming are derived. Based on these expressions, we propose an efficient power allocation scheme by solving a multi-objective optimization problem (MOOP) between maximizing the minimum spectral efficiency (SE) of multicast users and maximizing the average SE of unicast users with non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the MOOP is converted into a deep learning (DL) problem and solved by an unsupervised learning method to further promote computational efficiency. Numerical results verify the accuracy of the derived closed-form expressions and the effectiveness of the joint unicast and multigroup multicast transmission scheme in cell-free distributed massive MIMO systems. The SE analysis under various system parameters and the trade-off regions between these two conflicting optimization objectives offers numerous flexibilities for system optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源