论文标题

在可变的惯性下学习不变稳定控制器对频率调节的稳定控制器

Learning Invariant Stabilizing Controllers for Frequency Regulation under Variable Inertia

论文作者

Srivastava, Priyank, Hidalgo-Gonzalez, Patricia, Cortes, Jorge

论文摘要

成本和对传统一代环境影响的关注下降,促进了可再生能源和非惯性分布式能源资源的渗透。这些资源的间歇性可用性导致电力系统的惯性随着时间而变化。结果,有必要超越旨在调节不变动态的传统控制器。本文提出了一个基于学习的框架,该框架是基于从线性 - 季度调节器(LQR)公式获得的模仿数据集设计的稳定控制器的框架,用于惯性模式的不同切换序列。所提出的控制器是线性和不变的,因此可以解释,不需要当前操作模式的知识,并且可以保证稳定开关功率动力学。我们还表明,始终有可能使用无通信的本地控制器稳定交换系统,该控制器仅要求每个节点都使用自己的状态。在12个公共汽车3区网络上的模拟说明了我们的结果。

Declines in cost and concerns about the environmental impact of traditional generation have boosted the penetration of renewables and non-conventional distributed energy resources into the power grid. The intermittent availability of these resources causes the inertia of the power system to vary over time. As a result, there is a need to go beyond traditional controllers designed to regulate frequency under the assumption of invariant dynamics. This paper presents a learning-based framework for the design of stable controllers based on imitating datasets obtained from linear-quadratic regulator (LQR) formulations for different switching sequences of inertia modes. The proposed controller is linear and invariant, thereby interpretable, does not require the knowledge of the current operating mode, and is guaranteed to stabilize the switching power dynamics. We also show that it is always possible to stabilize the switched system using a communication-free local controller, whose implementation only requires each node to use its own state. Simulations on a 12-bus 3-region network illustrate our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源