论文标题
用于智能边缘监视的毫米级超低功率成像系统
Millimeter-Scale Ultra-Low-Power Imaging System for Intelligent Edge Monitoring
论文作者
论文摘要
毫米级嵌入式感应系统在较大设备上具有独特的优势,因为它们能够在毫不引人注目的和掩盖的同时捕获,分析,存储和传输数据。但是,受面积受限的系统构成了几个挑战,包括紧张的能源预算和峰值功率,有限的数据存储,昂贵的无线通信以及微型规模的身体集成。本文提出了一种新颖的6.7 $ \ times $ 7 $ \ times $ 5mm的成像系统,具有深入学习和图像处理功能,可用于智能边缘应用,并在家庭仪式场景中得到了证明。该系统是通过垂直堆叠自定义超低功率(ULP)IC来实现的,并使用诸如动态行为特定功率管理,层次事件检测以及数据压缩方法的组合等技术。它展示了一种新的图像校正神经网络,该网络弥补了由MM尺度镜头和ULP前端引起的非理想性。该系统可以无线存储74帧或卸载数据,在预期的电池寿命为7天的时间里,平均消耗了49.6美元的$ W。
Millimeter-scale embedded sensing systems have unique advantages over larger devices as they are able to capture, analyze, store, and transmit data at the source while being unobtrusive and covert. However, area-constrained systems pose several challenges, including a tight energy budget and peak power, limited data storage, costly wireless communication, and physical integration at a miniature scale. This paper proposes a novel 6.7$\times$7$\times$5mm imaging system with deep-learning and image processing capabilities for intelligent edge applications, and is demonstrated in a home-surveillance scenario. The system is implemented by vertically stacking custom ultra-low-power (ULP) ICs and uses techniques such as dynamic behavior-specific power management, hierarchical event detection, and a combination of data compression methods. It demonstrates a new image-correcting neural network that compensates for non-idealities caused by a mm-scale lens and ULP front-end. The system can store 74 frames or offload data wirelessly, consuming 49.6$μ$W on average for an expected battery lifetime of 7 days.