论文标题
通过生成对抗网络在NextG网络中的机器学习
Machine Learning in NextG Networks via Generative Adversarial Networks
论文作者
论文摘要
生成对抗网络(GAN)是机器学习(ML)算法,它们具有解决竞争资源分配问题以及检测和缓解异常行为的能力。在本文中,我们研究了它们在认知网络中的下一代(NextG)通信中的用途,以解决i)频谱共享,ii)检测异常,iii)减轻安全攻击。甘斯具有以下优势。首先,他们可以学习和合成现场数据,这可能是昂贵,耗时且不可重复的。其次,它们通过使用半监督数据启用训练前分类器。第三,它们有助于增加分辨率。第四,它们使频谱中损坏的位恢复。该论文提供了gan的基础知识,关于不同种类的gan的比较讨论,计算机视觉和图像处理中的gan的性能指标以及无线应用程序,许多用于无线应用程序的数据集,通用分类器的绩效指标,对gans of for i)-IIII)上述文献的调查以及未来的研究方向。作为Nextg通信的GAN的用例,我们表明可以有效地应用GAN,以用于信号分类(例如,用户身份验证)中的异常检测,其表现优于其他最先进的ML技术,例如自动编码器。
Generative Adversarial Networks (GANs) are Machine Learning (ML) algorithms that have the ability to address competitive resource allocation problems together with detection and mitigation of anomalous behavior. In this paper, we investigate their use in next-generation (NextG) communications within the context of cognitive networks to address i) spectrum sharing, ii) detecting anomalies, and iii) mitigating security attacks. GANs have the following advantages. First, they can learn and synthesize field data, which can be costly, time consuming, and nonrepeatable. Second, they enable pre-training classifiers by using semi-supervised data. Third, they facilitate increased resolution. Fourth, they enable the recovery of corrupted bits in the spectrum. The paper provides the basics of GANs, a comparative discussion on different kinds of GANs, performance measures for GANs in computer vision and image processing as well as wireless applications, a number of datasets for wireless applications, performance measures for general classifiers, a survey of the literature on GANs for i)-iii) above, and future research directions. As a use case of GAN for NextG communications, we show that a GAN can be effectively applied for anomaly detection in signal classification (e.g., user authentication) outperforming another state-of-the-art ML technique such as an autoencoder.