论文标题
如何利用超透明嵌入进行分布检测?
How to Exploit Hyperspherical Embeddings for Out-of-Distribution Detection?
论文作者
论文摘要
分布(OOD)检测是可靠机器学习的关键任务。表示学习的最新进展引起了基于距离的OOD检测,如果测试样品距离分布(ID)类的质心或原型相对较远,则将测试样品视为OOD。但是,先前的方法直接采用了足以分类ID样品的现成对比损失,但在测试输入包含OOD样本时并不是最佳设计。在这项工作中,我们提出了苹果酒,这是一个新颖的表示学习框架,可利用超球形嵌入进行OOD检测。苹果酒共同优化了两种损失,以促进强大的ID-OOD可分离性:一种分散损失,可促进不同类原型之间的较大角度距离,以及鼓励样品接近其类原型的紧凑型损失。我们分析并建立了OOD检测性能与超级空间中的嵌入性能之间的未开发关系,并证明了分散和紧凑性的重要性。 Cider建立了卓越的表现,在FPR95中,最新竞争对手的表现优于19.36%。代码可在https://github.com/deeplearning-wisc/cider上找到。
Out-of-distribution (OOD) detection is a critical task for reliable machine learning. Recent advances in representation learning give rise to distance-based OOD detection, where testing samples are detected as OOD if they are relatively far away from the centroids or prototypes of in-distribution (ID) classes. However, prior methods directly take off-the-shelf contrastive losses that suffice for classifying ID samples, but are not optimally designed when test inputs contain OOD samples. In this work, we propose CIDER, a novel representation learning framework that exploits hyperspherical embeddings for OOD detection. CIDER jointly optimizes two losses to promote strong ID-OOD separability: a dispersion loss that promotes large angular distances among different class prototypes, and a compactness loss that encourages samples to be close to their class prototypes. We analyze and establish the unexplored relationship between OOD detection performance and the embedding properties in the hyperspherical space, and demonstrate the importance of dispersion and compactness. CIDER establishes superior performance, outperforming the latest rival by 19.36% in FPR95. Code is available at https://github.com/deeplearning-wisc/cider.