论文标题

旗帜中间和弗拉格里尔

The Flag Median and FlagIRLS

论文作者

Mankovich, Nathan, King, Emily, Peterson, Chris, Kirby, Michael

论文摘要

找到数据集的原型(例如,平均值和中位数)对于许多常见的机器学习算法至关重要。已经证明子空间可为图像,视频等数据集提供有用的强大表示形式。由于子空间对应于Grassmann歧管上的点,因此人们会考虑Grassmann值数据集的子空间原型的想法。尽管已经描述了许多不同的子空间原型,但这些原型中的某些原型的计算在计算上是昂贵的,而其他原型受异常值的影响并在嘈杂的数据上产生高度不完善的聚类。这项工作提出了一个新的子空间原型,即旗帜中值,并引入了Flagirls算法的计算。我们提供的证据表明,旗帜中位数对异常值是强大的,并且可以在诸如linde-buzo-grey(LBG)等算法中有效使用,以便在司法上产生改进的聚类。数值实验包括合成数据集,MNIST手写数字数据集,Mind's Eye Video数据集和UCF YouTube操作数据集。将旗帜中位数比较了其他领先的算法,用于计算格拉曼尼亚上的原型,即$ \ ell_2 $ -Median和标志的平均值。我们发现,使用Flagirl计算合成数据集上的Flag Metian收敛为$ 4 $迭代。我们还看到,使用Flag的Grassmannian LBG,使用旗帜中间的Grassmannian LBG使用Flag Mane Mines的Eye DataTet上的Flag Mean或$ \ ELL_2 $ -Median产生至少$ 10 \%的群集纯度。

Finding prototypes (e.g., mean and median) for a dataset is central to a number of common machine learning algorithms. Subspaces have been shown to provide useful, robust representations for datasets of images, videos and more. Since subspaces correspond to points on a Grassmann manifold, one is led to consider the idea of a subspace prototype for a Grassmann-valued dataset. While a number of different subspace prototypes have been described, the calculation of some of these prototypes has proven to be computationally expensive while other prototypes are affected by outliers and produce highly imperfect clustering on noisy data. This work proposes a new subspace prototype, the flag median, and introduces the FlagIRLS algorithm for its calculation. We provide evidence that the flag median is robust to outliers and can be used effectively in algorithms like Linde-Buzo-Grey (LBG) to produce improved clusterings on Grassmannians. Numerical experiments include a synthetic dataset, the MNIST handwritten digits dataset, the Mind's Eye video dataset and the UCF YouTube action dataset. The flag median is compared the other leading algorithms for computing prototypes on the Grassmannian, namely, the $\ell_2$-median and to the flag mean. We find that using FlagIRLS to compute the flag median converges in $4$ iterations on a synthetic dataset. We also see that Grassmannian LBG with a codebook size of $20$ and using the flag median produces at least a $10\%$ improvement in cluster purity over Grassmannian LBG using the flag mean or $\ell_2$-median on the Mind's Eye dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源