论文标题
DeepSe-WF:网站指纹防御的统一安全估算
DeepSE-WF: Unified Security Estimation for Website Fingerprinting Defenses
论文作者
论文摘要
通常在基于机器学习的分类器的帮助下进行的网站指纹(WF)攻击,启用网络窃听器,以查明用户通过检查流量模式访问哪个网页。即使用户通过加密的隧道(例如,通过TOR或VPN)浏览Internet,这些攻击也已被证明可以成功。为了评估针对WF攻击的新防御能力的安全性,最近的作品提出了依赖特征的理论框架,这些框架估计了对手特征集的贝叶斯错误或手动制作的功能泄漏的相互信息。不幸的是,随着最先进的WF攻击越来越依赖深度学习和潜在的特征空间,因此无法再信任基于简单(和信息不足)手动制作的功能的安全性估算来评估WF对手在击败此类防御方面的潜在成功。在这项工作中,我们提出了DeepSe-WF,这是一个新型的WF安全估计框架,该框架利用了专门的基于KNN的估计量从学习的潜在特征空间中产生贝叶斯错误和共同信息估计,从而弥合了当前的WF攻击和安全估计方法之间的差距。我们的评估表明,与以前的框架相比,DeepSe-WF产生更严格的安全性估计,从而将所需的计算资源降低了一个数量级。
Website fingerprinting (WF) attacks, usually conducted with the help of a machine learning-based classifier, enable a network eavesdropper to pinpoint which web page a user is accessing through the inspection of traffic patterns. These attacks have been shown to succeed even when users browse the Internet through encrypted tunnels, e.g., through Tor or VPNs. To assess the security of new defenses against WF attacks, recent works have proposed feature-dependent theoretical frameworks that estimate the Bayes error of an adversary's features set or the mutual information leaked by manually-crafted features. Unfortunately, as state-of-the-art WF attacks increasingly rely on deep learning and latent feature spaces, security estimations based on simpler (and less informative) manually-crafted features can no longer be trusted to assess the potential success of a WF adversary in defeating such defenses. In this work, we propose DeepSE-WF, a novel WF security estimation framework that leverages specialized kNN-based estimators to produce Bayes error and mutual information estimates from learned latent feature spaces, thus bridging the gap between current WF attacks and security estimation methods. Our evaluation reveals that DeepSE-WF produces tighter security estimates than previous frameworks, reducing the required computational resources to output security estimations by one order of magnitude.