论文标题

模块化均衡量子近似优化

Modular Parity Quantum Approximate Optimization

论文作者

Ender, Kilian, Messinger, Anette, Fellner, Michael, Dlaska, Clemens, Lechner, Wolfgang

论文摘要

奇偶校验转换编码在较大的希尔伯特空间的低能量子空间中的自旋模型,并在平面晶格上有限制。应用量子近似优化算法(QAOA),可以通过将动力学限制为通过驱动程序汉密尔顿人将动力学限制为低能的子空间来明确执行,也可以通过能量惩罚来明确执行。虽然明确的方法允许与系统尺寸无关的电路深度并行化,但隐式方法显示出更好的QAOA性能。在这里,我们结合了两种方法,以提高QAOA性能,同时保持电路可行。特别是,我们引入了一种模块化平行化方法,该方法将电路划分为具有固定最大电路深度的子电路簇,与扩展到大型系统尺寸有关。

The parity transformation encodes spin models in the low-energy subspace of a larger Hilbert-space with constraints on a planar lattice. Applying the Quantum Approximate Optimization Algorithm (QAOA), the constraints can either be enforced explicitly, by energy penalties, or implicitly, by restricting the dynamics to the low-energy subspace via the driver Hamiltonian. While the explicit approach allows for parallelization with a system-size-independent circuit depth, the implicit approach shows better QAOA performance. Here we combine the two approaches in order to improve the QAOA performance while keeping the circuit parallelizable. In particular, we introduce a modular parallelization method that partitions the circuit into clusters of subcircuits with fixed maximal circuit depth, relevant for scaling up to large system sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源