论文标题

图形的群集头部检测层次无人机群自我监督学习

Cluster Head Detection for Hierarchical UAV Swarm With Graph Self-supervised Learning

论文作者

Mou, Zhiyu, Liu, Jun, Yun, Xiang, Gao, Feifei, Wu, Qihui

论文摘要

在本文中,我们研究了带有多个无人机群集的两级无人驾驶飞机(UAV)群网络(USNET)的集群头部检测问题,其中低水平自动人UAVS(FUAVS)的固有遵循策略(IFS)相对于高级集群Heatuster(Huavs)而言是无关的。我们首先提出了一个图形注意力,自制学习算法(GASSL),以检测单个无人机群集的Huavs,而GASSL可以同时适合IFS。然后,为了通过多个无人机簇检测USNET中的Huavs,我们基于GASSL开发了一个多群集图表自我监督学习算法(MC-GASSL)。 MC-GASSL将USNET簇为基于封闭的复发单元(GRU)的度量学习方案,并使用GASSL找到每个群集中的HUAVS。数值结果表明,GASSL可以在单个无人机簇中检测HUAV,遵守平均精度超过98%的各种IFS。仿真结果还表明,使用MC-GASSL的USNET的聚类纯度超过了传统的聚类算法的平均水平至少为10%。此外,MC-GASSL可以有效地检测出具有各种IFS和群集数量的USNET中的所有HUAVs,其检测冗余。

In this paper, we study the cluster head detection problem of a two-level unmanned aerial vehicle (UAV) swarm network (USNET) with multiple UAV clusters, where the inherent follow strategy (IFS) of low-level follower UAVs (FUAVs) with respect to high-level cluster head UAVs (HUAVs) is unknown. We first propose a graph attention self-supervised learning algorithm (GASSL) to detect the HUAVs of a single UAV cluster, where the GASSL can fit the IFS at the same time. Then, to detect the HUAVs in the USNET with multiple UAV clusters, we develop a multi-cluster graph attention self-supervised learning algorithm (MC-GASSL) based on the GASSL. The MC-GASSL clusters the USNET with a gated recurrent unit (GRU)-based metric learning scheme and finds the HUAVs in each cluster with GASSL. Numerical results show that the GASSL can detect the HUAVs in single UAV clusters obeying various kinds of IFSs with over 98% average accuracy. The simulation results also show that the clustering purity of the USNET with MC-GASSL exceeds that with traditional clustering algorithms by at least 10% average. Furthermore, the MC-GASSL can efficiently detect all the HUAVs in USNETs with various IFSs and cluster numbers with low detection redundancies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源