论文标题
LSTMSPLIT:有效基于分裂学习的LSTM在顺序序列数据上
LSTMSPLIT: Effective SPLIT Learning based LSTM on Sequential Time-Series Data
论文作者
论文摘要
联合学习(FL)和分裂学习(SL)是两种流行的分布式机器学习(ML)方法,可提供一些数据隐私保护机制。在时间序列的分类问题中,许多研究人员通常使用单个客户端的SL方法使用1D卷积神经网络(1DCNN),以减少客户端的计算开销,同时仍保留数据隐私。另一种方法是复发性神经网络(RNN),用于顺序分区的数据,其中多段顺序数据的段分布在各个客户端。但是,据我们所知,在短期内存(LSTM)网络的SL中,它仍然没有做很多工作,即使LSTM网络实际上在处理时间序列数据方面也有效。在这项工作中,我们提出了一种新方法LSTMSPLIT,该方法将SL Architecture与LSTM网络一起使用SL Architecture将时间序列数据与多个客户端分类。差异隐私(DP)用于解决数据隐私泄漏。与使用心电图数据集和人类活动识别数据集相比,所提出的方法LSTMSPLIT与Split-1DCNN方法相比,已实现了更好或合理的精度。此外,提出的方法LSTMSPLIT也可以在应用差异隐私来保留LSTMSPLIT剪切层的用户隐私后达到良好的准确性。
Federated learning (FL) and split learning (SL) are the two popular distributed machine learning (ML) approaches that provide some data privacy protection mechanisms. In the time-series classification problem, many researchers typically use 1D convolutional neural networks (1DCNNs) based on the SL approach with a single client to reduce the computational overhead at the client-side while still preserving data privacy. Another method, recurrent neural network (RNN), is utilized on sequentially partitioned data where segments of multiple-segment sequential data are distributed across various clients. However, to the best of our knowledge, it is still not much work done in SL with long short-term memory (LSTM) network, even the LSTM network is practically effective in processing time-series data. In this work, we propose a new approach, LSTMSPLIT, that uses SL architecture with an LSTM network to classify time-series data with multiple clients. The differential privacy (DP) is applied to solve the data privacy leakage. The proposed method, LSTMSPLIT, has achieved better or reasonable accuracy compared to the Split-1DCNN method using the electrocardiogram dataset and the human activity recognition dataset. Furthermore, the proposed method, LSTMSPLIT, can also achieve good accuracy after applying differential privacy to preserve the user privacy of the cut layer of the LSTMSPLIT.