论文标题
近端Pannet:基于模型的深层网络用于Pansharpening
Proximal PanNet: A Model-Based Deep Network for Pansharpening
论文作者
论文摘要
最近,对Pansharpening进行了广泛的研究,旨在通过将低分辨率的多光谱(LRMS)图像与高分辨率Panchrostic(PAN)图像融合来产生高分辨率的多光谱(HRMS)图像。但是,现有的基于深度学习的Pansharpening方法直接学习了从LRM和PAN到HRM的映射。这些网络体系结构始终缺乏足够的解释性,从而限制了进一步的性能改进。为了减轻这个问题,我们通过将基于模型的方法与深度学习方法相结合,提出了一个新颖的深层网络,以供pansharpening。首先,我们使用卷积稀疏编码(CSC)技术并设计近端梯度算法来构建一个观察模型,以解决该模型。其次,我们通过使用卷积神经网络学习近端运算符,将迭代算法展开为被称为近端Pannet的深层网络。最后,所有可学习的模块都可以自动以端到端的方式学习。某些基准数据集的实验结果表明,我们的网络在定量和定性上的性能都比其他高级方法更好。
Recently, deep learning techniques have been extensively studied for pansharpening, which aims to generate a high resolution multispectral (HRMS) image by fusing a low resolution multispectral (LRMS) image with a high resolution panchromatic (PAN) image. However, existing deep learning-based pansharpening methods directly learn the mapping from LRMS and PAN to HRMS. These network architectures always lack sufficient interpretability, which limits further performance improvements. To alleviate this issue, we propose a novel deep network for pansharpening by combining the model-based methodology with the deep learning method. Firstly, we build an observation model for pansharpening using the convolutional sparse coding (CSC) technique and design a proximal gradient algorithm to solve this model. Secondly, we unfold the iterative algorithm into a deep network, dubbed as Proximal PanNet, by learning the proximal operators using convolutional neural networks. Finally, all the learnable modules can be automatically learned in an end-to-end manner. Experimental results on some benchmark datasets show that our network performs better than other advanced methods both quantitatively and qualitatively.