论文标题

气泡驱动的气体升高及其速度特征

Bubble-driven Gas Uplift in Galaxy Clusters and its Velocity Features

论文作者

Zhang, Congyao, Zhuravleva, Irina, Gendron-Marsolais, Marie-Lou, Churazov, Eugene, Schekochihin, Alexander A., Forman, William R.

论文摘要

相对论等离子体的浮力气泡对于星系簇中的主动银河核反馈至关重要,搅拌和加热簇内培养基(ICM)。观察结果表明,这些升高的气泡保持其完整性和锋利的边缘比流体动力学模拟所预测的要长得多。在这项研究中,我们假设可以将气泡建模为刚​​体的物体,并证明完整的气泡及其与环境ICM的长期相互作用在塑造气体运动学,形成薄的气体结构(例如H $α$丝)以及在簇核中产生的内波发挥着重要作用。我们发现,发达的涡流是在浮动的泡沫之后形成的,正是这些涡流而不是达尔文漂移,而不是达尔文漂流,这是导致大多数气体质量升高的原因。由于大气的强密度分层,并最终从气泡脱离,涡流逐渐沿气泡的运动方向逐渐伸长,迅速发展为高速喷射流,向群集中心传播。这张图片自然地解释了珀尔修斯集群中的长直和马蹄形的H $α$丝的存在,气体的内和向外运动,以及X射线加权的气体速度分布附近的西北气泡附近,由iThomi观察到的西北气泡。我们的模型复制了细丝的观察到的H $α$速度结构功能,为其陡峭的缩放和归一化提供了简单的解释:层流气流和由完整气泡驱动的细丝中的大涡流,而不是空间上的小规模湍流,足以使结构一致地产生一致的结构。

Buoyant bubbles of relativistic plasma are essential for active galactic nucleus feedback in galaxy clusters, stirring and heating the intracluster medium (ICM). Observations suggest that these rising bubbles maintain their integrity and sharp edges much longer than predicted by hydrodynamic simulations. In this study, we assume that bubbles can be modeled as rigid bodies and demonstrate that intact bubbles and their long-term interactions with the ambient ICM play an important role in shaping gas kinematics, forming thin gaseous structures (e.g., H$α$ filaments), and generating internal waves in cluster cores. We find that well-developed eddies are formed in the wake of a buoyantly rising bubble, and it is these eddies, rather than the Darwin drift, that are responsible for most of the gas mass uplift. The eddies gradually elongate along the bubble's direction of motion due to the strong density stratification of the atmosphere and eventually detach from the bubble, quickly evolving into a high-speed jet-like stream propagating towards the cluster center. This picture naturally explains the presence of long straight and horseshoe-shaped H$α$ filaments in the Perseus cluster, inward and outward motions of the gas, and the X-ray-weighted gas velocity distributions near the northwestern bubble observed by Hitomi. Our model reproduces the observed H$α$ velocity structure function of filaments, providing a simple interpretation for its steep scaling and normalization: laminar gas flows and large eddies within filaments driven by the intact bubbles, rather than spatially homogeneous small-scale turbulence, are sufficient to produce a structure function consistent with observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源