论文标题
与Lebesgue和Lipschitz空间之间多线性分数积分运算符的连续性属性相关的最佳参数
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
论文作者
论文摘要
我们处理从加权Lebesgue空间的产物到足够的加权Lipschitz空间的多线性分数积分运算符$ i_ {γ,m} $的界限。我们的结果不仅概括了一些先前的估计值,不仅是线性案例,而且还针对多线性上下文中未加权的问题。我们表征了上述问题所包含的权重类别的类别,并显示了所涉及的参数的最佳范围。从定义相应空间属于某个区域的参数的意义上可以理解最优性。我们进一步展示了涵盖上述区域的班级体重的例子。
We deal with the boundedness of the multilinear fractional integral operator $I_{γ,m}$ from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.