论文标题
爱因斯坦高斯 - 骨网/weyl重力理论在d = 4时的拓扑校正和保形反应
Topological Corrections and Conformal Backreaction in the Einstein Gauss-Bonnet/Weyl Theories of Gravity at D=4
论文作者
论文摘要
我们研究了引力反应,该反应是通过将一般的共形扇形与外部的,经典重力耦合而产生的,如保形异常作用所描述的那样。我们解决了这些动作中拓扑高斯 - 骨网和WEYL术语的正则化以及尺寸正则化(DR)的使用所提出的问题。我们讨论了它们的局部和非局部表达,作为结构理论的IR和紫外线描述,在保形破坏量表下方和之上。我们的讨论与最新的DILATON重力研究重叠 - 通过Einstein -Gauss -Bonnet(EGB)理论获得的一定奇异限制,最初引入了一种绕过Lovelock定理的方式。我们表明,通过对欧拉密度的有限重新归一化,可以通过局部四分之一形式旁边的二次理论(在dilaton场)进行非本地的,纯粹的引力实现。这种非本地版本被剥夺了任何量表,至少可以在平坦空间附近扩展,从组合$ r \ box^{ - 1} $ timess的异常功能的多个变化,这在最近的研究中指出,$ d = 4 $。对于拟议的非局部EGB理论,可以得出类似的结论。扩展是从先前对异常的保形病房身份进行的研究中出现的,该病房在动量空间中限制了较平坦的时空限制的这种理论。
We investigate the gravitational backreaction, generated by coupling a general conformal sector to external, classical gravity, as described by a conformal anomaly effective action. We address the issues raised by the regularization of the topological Gauss-Bonnet and Weyl terms in these actions and the use of dimensional regularization (DR). We discuss both their local and nonlocal expressions, as possible IR and UV descriptions of conformal theories, below and above the conformal breaking scale. Our discussion overlaps with several recent studies of dilaton gravities - obtained via a certain singular limit of the Einstein-Gauss-Bonnet (EGB) theory - originally introduced as a way to bypass Lovelock's theorem. We show that nonlocal, purely gravitational realizations of such EGB theories, quadratic in the dilaton field, beside their local quartic forms, are possible by a finite renormalization of the Euler density. Such nonlocal versions, which are deprived of any scale, can be expanded, at least around flat space, in terms of the combination $R \Box^{-1}$ times multiple variations of the anomaly functional, as pointed out in recent studies at $d=4$. Similar conclusions can be drawn for the proposed nonlocal EGB theory. The expansion emerges from previous investigations of the anomalous conformal Ward identities that constrain such theories around the flat spacetime limit in momentum space.