论文标题

推断的比例综合投影梯度方法进行圆锥优化

Extrapolated Proportional-Integral Projected Gradient Method for Conic Optimization

论文作者

Yu, Yue, Elango, Purnanand, Açıkmeşe, Behçet, Topcu, Ufuk

论文摘要

圆锥优化是受圆锥约束的凸二次功能的最小化。我们引入了一种新型的一阶方法,用于圆锥优化,称为\ emph {外推优体投影梯度方法(XPIPG)},自动检测到不可行。 XPIPG的迭代渐近地满足了一组原始的双重最优条件,或者产生原始或双重可口的证明。我们在模型预测控制中使用基准问题证明了XPIPG的应用。 XPIPG优于许多最先进的圆锥优化求解器,尤其是在解决大规模问题时。

Conic optimization is the minimization of a convex quadratic function subject to conic constraints. We introduce a novel first-order method for conic optimization, named \emph{extrapolated proportional-integral projected gradient method (xPIPG)}, that automatically detects infeasibility. The iterates of xPIPG either asymptotically satisfy a set of primal-dual optimality conditions, or generate a proof of primal or dual infeasibility. We demonstrate the application of xPIPG using benchmark problems in model predictive control. xPIPG outperforms many state-of-the-art conic optimization solvers, especially when solving large-scale problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源