论文标题

有效的息肉细分网络

An Efficient Polyp Segmentation Network

论文作者

Erol, Tugberk, Sarikaya, Duygu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Cancer is a disease that occurs as a result of the uncontrolled division and proliferation of cells. Colon cancer is one of the most common types of cancer in the world. Polyps that can be seen in the large intestine can cause cancer if not removed with early intervention. Deep learning and image segmentation techniques are used to minimize the number of polyps that goes unnoticed by the experts during these interventions. Although these techniques perform well in terms of accuracy, they require too many parameters. We propose a new model to address this problem. Our proposed model requires fewer parameters as well as outperforms the state-of-the-art models. We use EfficientNetB0 for the encoder part, as it performs well in various tasks while requiring fewer parameters. We use partial decoder, which is used to reduce the number of parameters while achieving high accuracy in segmentation. Since polyps have variable appearances and sizes, we use an asymmetric convolution block instead of a classic convolution block. Then, we weight each feature map using a squeeze and excitation block to improve our segmentation results. We used different splits of Kvasir and CVC-ClinicDB datasets for training, validation, and testing, while we use CVC- ColonDB, ETIS, and Endoscene datasets for testing. Our model outperforms state-of-art models with a Dice metric of %71.8 on the ColonDB test dataset, %89.3 on the EndoScene test dataset, and %74.8 on the ETIS test dataset while requiring fewer parameters. Our model requires 2.626.337 parameters in total while the closest model in the state-of-the-art is U-Net++ with 9.042.177 parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源