论文标题
关于二维磁静电级方程的毕业生边界价值问题
On the Grad-Rubin boundary value problem for the two-dimensional magneto-hydrostatic equations
论文作者
论文摘要
在这项工作中,我们研究了50年代后期毕业生和鲁宾最初提出的磁性静态方程的边界价值问题的可溶性。证明依赖于将所谓的当前传输方法与Hölder估算的固定点参数结合在一起的一类非卷积单数积分运算符的估计。相同的方法允许解决稳定不可压缩的欧拉方程的类似边界值问题。
In this work, we study the solvability of a boundary value problem for the magneto-hydrostatic equations originally proposed by Grad and Rubin in the late 50's. The proof relies on a fixed point argument which combines the so-called current transport method together with Hölder estimates for a class of non-convolution singular integral operators. The same method allows to solve an analogous boundary value problem for the steady incompressible Euler equations.