论文标题

椭圆形温达尔滕表面:奇点,旋转示例和半空间定理

Elliptic Weingarten surfaces: singularities, rotational examples and the halfspace theorem

论文作者

Fernandez, Isabel, Mira, Pablo

论文摘要

我们通过阶段空间分析表明,在$ \ mathbb {r}^3 $中,旋转表面完全有17个可能的定性行为,使得满足任意椭圆形的weingarten方程$ W(κ_________2,κ_2)= 0 $,并研究了此类示例的奇异性。作为该分类的全球应用,我们证明了有限顺序的一般椭圆形温度方程的尖锐半空间定理,以及最多有两个奇异性的峰值椭圆形温达尔登球体的分类。如果$ w $不是椭圆机,那么我们对Yau的问题给出了负面答案,以了解旋转椭圆形的独特性。

We show by phase space analysis that there are exactly 17 possible qualitative behaviors for a rotational surface in $\mathbb{R}^3$ that satisfies an arbitrary elliptic Weingarten equation $W(κ_1,κ_2)=0$, and study the singularities of such examples. As global applications of this classification, we prove a sharp halfspace theorem for general elliptic Weingarten equations of finite order, and a classification of peaked elliptic Weingarten spheres with at most two singularities. In the case that $W$ is not elliptic, we give a negative answer to a question by Yau regarding the uniqueness of rotational ellipsoids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源