论文标题

端到端的多个实例学习随梯度积累

End-to-end Multiple Instance Learning with Gradient Accumulation

论文作者

Andersson, Axel, Koriakina, Nadezhda, Sladoje, Nataša, Lindblad, Joakim

论文摘要

能够学习弱标记的数据并提供可解释性,这是基于注意力的深层实例学习(ABMIL)方法在组织病理学图像分类中特别受欢迎的两个主要原因。这样的图像数据通常以吉米金斯大小的全斜线图像(WSI)形式出现,这些图像被裁剪成较小的贴片(实例)。但是,数据的庞大规模使训练ABMIL模型具有挑战性。一个WSI的所有实例不能通过常规GPU立即处理。现有解决方案通过依靠预训练的模型,战略抽样或实例选择或自我监督的学习来损害培训。我们提出了一种基于梯度积累的培训策略,该策略可以直接对ABMIL模型进行直接端到端培训,而不会受到GPU记忆的限制。我们对QMNIST和IMAGENETTE进行实验,以研究性能和训练时间,并与常规的内存廉价基线和最近采样的方法进行比较。这种记忆效率的方法虽然较慢,但与内存的基线无法区分性能。

Being able to learn on weakly labeled data, and provide interpretability, are two of the main reasons why attention-based deep multiple instance learning (ABMIL) methods have become particularly popular for classification of histopathological images. Such image data usually come in the form of gigapixel-sized whole-slide-images (WSI) that are cropped into smaller patches (instances). However, the sheer size of the data makes training of ABMIL models challenging. All the instances from one WSI cannot be processed at once by conventional GPUs. Existing solutions compromise training by relying on pre-trained models, strategic sampling or selection of instances, or self-supervised learning. We propose a training strategy based on gradient accumulation that enables direct end-to-end training of ABMIL models without being limited by GPU memory. We conduct experiments on both QMNIST and Imagenette to investigate the performance and training time, and compare with the conventional memory-expensive baseline and a recent sampled-based approach. This memory-efficient approach, although slower, reaches performance indistinguishable from the memory-expensive baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源