论文标题

南部非洲的地磁场插值法的适应

Adaptations to a geomagnetic field interpolation method in Southern Africa

论文作者

Heyns, M. J., Lotz, S. I., Cilliers, P. J., Gaunt, C. T.

论文摘要

太空天气及其对基础设施的影响在现代时代呈现出明显的风险,这证明了电力网络中地磁诱导电流(GIC)的不利影响。为了建模GIC,地面的地磁场(B场)测量至关重要,需要在感兴趣的地区提供。全球挑战在于磁力计阵列的稀疏分布,磁力计阵列很少位于关键动力网络节点附近。经常需要使用球形基本电流系统(SECS)方法来为高纬度区域开发的球形基本系统(SEC)方法,因此通常需要对地磁场(B场)的插值进行插值。我们适应此插值方案,以包括低成本变体仪,以直接插值DB/DT并提高插值精度。对该方案的进一步适应是物理代表大多数电力网络和管道所在的中纬度上下文。这些地区的驱动电流系统与其高纬度对应物不同。使用物理一致的中纬度版本的SECS,我们展示了为什么以前在南部非洲的实现不正确,但仍会导致有用的插值。这些适应性的范围不仅在整体研究中直接应用于研究,还可以使用有效的低成本仪器来提高GIC建模准确性。

Space weather and its impact on infrastructure presents a clear risk in the modern era, as evidenced by the adverse effects of geomagnetically induced currents (GICs) in power networks. To model GICs, ground-based geomagnetic field (B-field) measurements are critical and need to be available in the region of interest. A challenge globally lies in the sparse distribution of magnetometer arrays, which are seldom located near critical power network nodes. Interpolation of the geomagnetic field (B-field) is often needed, with the spherical elementary current system (SECS) approach developed for high-latitude regions favoured. We adapt this interpolation scheme to include low-cost variometers to interpolate dB/dt directly and increase interpolation accuracy. A further adaptation to the scheme is to physically represent the mid-latitude context where most power networks and pipelines lie. The driving current systems in these regions differ from their high-latitude counterparts. Using a physics-consistent mid-latitude version of SECS, we show why previous implementations in Southern Africa are incorrect but still result in useful interpolation. The scope of these adaptations not only has direct application to research in general, but also to utilities, where effective low-cost instrumentation can be used to improve GIC modelling accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源