论文标题

距离采样和捕获重新接收数据的数据融合

Data fusion of distance sampling and capture-recapture data

论文作者

Mohankumar, Narmadha M., Hefley, Trevor J., Silber, Katy, Boyle, W. Alice

论文摘要

物种分布模型(SDM)越来越多地用于生态学,生物地理学和野生动植物管理中,以了解种类繁忙的关系和时间和时间之间的丰富性。距离采样(DS)和捕获重新接收(CR)是两种广泛收集的数据类型,以了解物种抢劫关系和丰度。尽管如此,由于缺乏空间覆盖,它们很少在SDMS中使用。但是,两个数据源的数据融合可以增加空间覆盖范围,这可以减少参数不确定性并使预测更准确,因此可以用于物种分布建模。我们开发了一种基于模型的DS和CR数据数据融合的方法。我们的建模方法说明了两个常见的缺少数据问题:1)失踪的个人并非随机(MNAR)和2)部分缺少位置信息。使用仿真实验,我们评估了建模方法的性能,并将其与使用临时方法来说明缺失数据问题的现有方法进行了比较。我们的结果表明,与现有方法相比,我们的方法提供了公正的参数估计值。我们使用在美国东北部的Grasshopper麻雀(Ammodramus Savannarum)收集的数据证明了我们的方法。

Species distribution models (SDMs) are increasingly used in ecology, biogeography, and wildlife management to learn about the species-habitat relationships and abundance across space and time. Distance sampling (DS) and capture-recapture (CR) are two widely collected data types to learn about species-habitat relationships and abundance; still, they are seldomly used in SDMs due to the lack of spatial coverage. However, data fusion of the two data sources can increase spatial coverage, which can reduce parameter uncertainty and make predictions more accurate, and therefore, can be used for species distribution modeling. We developed a model-based approach for data fusion of DS and CR data. Our modeling approach accounts for two common missing data issues: 1) missing individuals that are missing not at random (MNAR) and 2) partially missing location information. Using a simulation experiment, we evaluated the performance of our modeling approach and compared it to existing approaches that use ad-hoc methods to account for missing data issues. Our results show that our approach provides unbiased parameter estimates with increased efficiency compared to the existing approaches. We demonstrated our approach using data collected for Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, USA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源