论文标题

MWP分析的改进和实施:实现隐性计算复杂性

mwp-Analysis Improvement and Implementation: Realizing Implicit Computational Complexity

论文作者

Aubert, Clément, Rubiano, Thomas, Rusch, Neea, Seiller, Thomas

论文摘要

隐性计算复杂性(ICC)推动了对复杂性类别的更好理解,但它还指导了资源感知语言和静态源代码分析仪的发展。在开发的方法中,MWP-FLOW分析证明了由命令程序操纵的值的大小的多项式界限。通过将状态之间的过渡界定而不是像大多数静态分析仪一样,而不是孤立地关注状态,并且不关心终止或值的紧密界限,从而获得了此结果。这些差异以及其内置组成性使MWP-Flow分析成为确定ICC启发技术与更传统的静态分析方法相比的良好目标。本文的贡献是三重的:我们对原始分析的内部机制进行了微调,以使其在实践中可以进行处理;我们将分析扩展到功能调用并利用其机械来计算分析的结果;我们将结果分析作为轻量级工具,以自动对C程序进行数据尺寸分析。这项记录的努力通过将昂贵的分析转换为可处理的程序来准备并使认证的复杂性分析的开发,这进一步解释了确定是否存在计算问题的问题的问题。

Implicit Computational Complexity (ICC) drives better understanding of complexity classes, but it also guides the development of resources-aware languages and static source code analyzers. Among the methods developed, the mwp-flow analysis certifies polynomial bounds on the size of the values manipulated by an imperative program. This result is obtained by bounding the transitions between states instead of focusing on states in isolation, as most static analyzers do, and is not concerned with termination or tight bounds on values. Those differences, along with its built-in compositionality, make the mwp-flow analysis a good target for determining how ICC-inspired techniques diverge compared with more traditional static analysis methods. This paper's contributions are threefold: we fine-tune the internal machinery of the original analysis to make it tractable in practice; we extend the analysis to function calls and leverage its machinery to compute the result of the analysis efficiently; and we implement the resulting analysis as a lightweight tool to automatically perform data-size analysis of C programs. This documented effort prepares and enables the development of certified complexity analysis, by transforming a costly analysis into a tractable program, that furthermore decorrelates the problem of deciding if a bound exist with the problem of computing it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源