论文标题
全球最佳事件摄像机运动估计
Globally-Optimal Event Camera Motion Estimation
论文作者
论文摘要
事件摄像机是受生物启发的传感器,在HDR条件下表现良好并且具有高时间分辨率。但是,与传统的基于框架的摄像机不同,事件摄像机测量异步像素级的亮度变化并以高度离散的格式返回,因此需要新的算法。本文查看事件摄像头的额头平行运动估计。事件的流以时空量的一般同谱翘曲模型,并且该目标被提出为在不受破坏事件的图像中最大化对比度的最大化。但是,与先前的艺术形成鲜明对比的是,我们为这个通常的非凸面问题提供了全球最佳解决方案,因此消除了对良好初始猜测的依赖性。我们的算法依赖于分支和结合的优化,我们为六个不同的对比度估计功能得出了新颖的递归上限和下限。我们方法的实际有效性得到了通过向下朝下的活动摄像机对AGV运动估算的非常成功的应用,这是一个充满挑战的场景,在这种情况下,传感器在嘈杂,快速移动的纹理前面经历额额并行运动。
Event cameras are bio-inspired sensors that perform well in HDR conditions and have high temporal resolution. However, different from traditional frame-based cameras, event cameras measure asynchronous pixel-level brightness changes and return them in a highly discretised format, hence new algorithms are needed. The present paper looks at fronto-parallel motion estimation of an event camera. The flow of the events is modeled by a general homographic warping in a space-time volume, and the objective is formulated as a maximisation of contrast within the image of unwarped events. However, in stark contrast to prior art, we derive a globally optimal solution to this generally non-convex problem, and thus remove the dependency on a good initial guess. Our algorithm relies on branch-and-bound optimisation for which we derive novel, recursive upper and lower bounds for six different contrast estimation functions. The practical validity of our approach is supported by a highly successful application to AGV motion estimation with a downward facing event camera, a challenging scenario in which the sensor experiences fronto-parallel motion in front of noisy, fast moving textures.