论文标题
远离均衡的变形和波长选择:基于单数扰动理论的统一框架
Coarsening and wavelength selection far from equilibrium: a unifying framework based on singular perturbation theory
论文作者
论文摘要
细胞内蛋白质模式通过(几乎)质量持续反应扩散系统描述。尽管这些模式最初是由于理解的Turing不稳定而出于均匀稳态而形成的,但完全非线性模式的动力学不存在一般理论。我们开发了一种统一的理论,用于(几乎)质量质量的两组分 - 反应扩散系统中波长选择动力学,而与所选择的特定数学模型无关。这涵盖了这些系统中发现的膜形和峰形模式的动力学。我们的分析发现了动力学的扩散和反应有限的策略,该方案分别在质量支持反应 - 扩散系统与Cahn-Hilliard以及保守的Allen-CAHN方程之间提供了系统的联系。具有不同波长的固定模式家族中的稳定性阈值可预测为最终静止图案选择的波长。在短波长时,单模式域之间的自我扩增质量转运驱动着使严格质量保护的弱源术语驱动,而在较大的波长较弱的源术语中,会导致har缩于块状。模式域之间的质量竞争率是通过单数扰动理论分析计算的,并根据基本的物理过程合理化。由此产生的封闭形式的分析表达式使我们能够定量预测变形动力学和最终模式波长。我们发现这些表达式与数值结果有着极好的一致性。此处提供的两个组件系统中完全非线性模式的长度尺度动力学的系统理解建立了基础,以揭示具有潜在的几种保护定律的多组分系统中波长选择的机制。
Intracellular protein patterns are described by (nearly) mass-conserving reaction-diffusion systems. While these patterns initially form out of a homogeneous steady state due to the well-understood Turing instability, no general theory exists for the dynamics of fully nonlinear patterns. We develop a unifying theory for wavelength-selection dynamics in (nearly) mass-conserving two-component reaction-diffusion systems independent of the specific mathematical model chosen. This encompasses both the dynamics of the mesa- and peak-shaped patterns found in these systems. Our analysis uncovers a diffusion- and a reaction-limited regime of the dynamics, which provides a systematic link between the dynamics of mass-conserving reaction-diffusion systems and the Cahn-Hilliard as well as conserved Allen-Cahn equations, respectively. A stability threshold in the family of stationary patterns with different wavelengths predicts the wavelength selected for the final stationary pattern. At short wavelengths, self-amplifying mass transport between single pattern domains drives coarsening while at large wavelengths weak source terms that break strict mass conservation lead to an arrest of the coarsening process. The rate of mass competition between pattern domains is calculated analytically using singular perturbation theory, and rationalized in terms of the underlying physical processes. The resulting closed-form analytical expressions enable us to quantitatively predict the coarsening dynamics and the final pattern wavelength. We find excellent agreement of these expressions with numerical results. The systematic understanding of the length-scale dynamics of fully nonlinear patterns in two-component systems provided here builds the basis to reveal the mechanisms underlying wavelength selection in multi-component systems with potentially several conservation laws.