论文标题

使用分布数据的弱监督语义细分

Weakly Supervised Semantic Segmentation using Out-of-Distribution Data

论文作者

Lee, Jungbeom, Oh, Seong Joon, Yun, Sangdoo, Choe, Junsuk, Kim, Eunji, Yoon, Sungroh

论文摘要

弱监督的语义分割(WSSS)方法通常是基于从分类器获得的像素级定位图。但是,仅在课堂标签上进行培训,分类器遭受了前景和背景线索(例如火车和铁路)之间的虚假相关性,从根本上讲是WSSS的性能。以前的努力在其他监督下解决了这一问题。我们提出了一种新颖的信息来源,以将前景与背景区分开:分布外(OOD)数据或没有前景对象类的图像。特别是,我们利用了分类器可能做出假阳性预测的硬OOD。这些样本通常在背景(例如轨道)上具有关键的视觉特征,分类器通常会混淆为前景(例如火车),因此这些提示使分类器正确抑制了虚假的背景提示。获得如此艰难的OOD不需要大量的注释工作;除了收集班级标签的原始努力之外,它只会产生一些图像级标签成本。我们提出了一种用于利用硬OOD的方法。 W-ood在Pascal VOC 2012上实现了最先进的表现。

Weakly supervised semantic segmentation (WSSS) methods are often built on pixel-level localization maps obtained from a classifier. However, training on class labels only, classifiers suffer from the spurious correlation between foreground and background cues (e.g. train and rail), fundamentally bounding the performance of WSSS. There have been previous endeavors to address this issue with additional supervision. We propose a novel source of information to distinguish foreground from the background: Out-of-Distribution (OoD) data, or images devoid of foreground object classes. In particular, we utilize the hard OoDs that the classifier is likely to make false-positive predictions. These samples typically carry key visual features on the background (e.g. rail) that the classifiers often confuse as foreground (e.g. train), so these cues let classifiers correctly suppress spurious background cues. Acquiring such hard OoDs does not require an extensive amount of annotation efforts; it only incurs a few additional image-level labeling costs on top of the original efforts to collect class labels. We propose a method, W-OoD, for utilizing the hard OoDs. W-OoD achieves state-of-the-art performance on Pascal VOC 2012.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源