论文标题
超低精度超分辨率网络的动态双训练界
Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution Networks
论文作者
论文摘要
轻巧的超级分辨率(SR)模型因其在移动设备中的可用性而受到了极大的关注。许多努力都采用网络量化来压缩SR模型。但是,当将SR模型定量为具有低成本层量化的超低精度(例如2位和3位)时,这些方法会遭受严重的性能降解。在本文中,我们确定性能下降来自于层对称量化器与SR模型中高度不对称的激活分布之间的矛盾。这种差异会导致量化水平上的浪费或重建图像中的细节损失。因此,我们提出了一种新型的激活量化器,称为动态双重训练边界(DDTB),以适应激活的不对称性。具体而言,DDTB在:1)具有可训练的上限和下限的层量化器中,以应对高度不对称的激活。 2)动态栅极控制器可以在运行时自适应地调整上和下限,以克服不同样品的急剧变化的激活范围。为了减少额外的开销,将动态栅极控制器量化为2位,并仅根据引入的动力强度应用于SR网络的一部分。广泛的实验表明,我们的DDTB在超低精度方面表现出显着的性能提高。例如,当将EDSR量化为2位并将输出图像扩展为x4时,我们的DDTB在Urban100基准测试基准上实现了0.70dB PSNR的增加。代码位于\ url {https://github.com/zysxmu/ddtb}。
Light-weight super-resolution (SR) models have received considerable attention for their serviceability in mobile devices. Many efforts employ network quantization to compress SR models. However, these methods suffer from severe performance degradation when quantizing the SR models to ultra-low precision (e.g., 2-bit and 3-bit) with the low-cost layer-wise quantizer. In this paper, we identify that the performance drop comes from the contradiction between the layer-wise symmetric quantizer and the highly asymmetric activation distribution in SR models. This discrepancy leads to either a waste on the quantization levels or detail loss in reconstructed images. Therefore, we propose a novel activation quantizer, referred to as Dynamic Dual Trainable Bounds (DDTB), to accommodate the asymmetry of the activations. Specifically, DDTB innovates in: 1) A layer-wise quantizer with trainable upper and lower bounds to tackle the highly asymmetric activations. 2) A dynamic gate controller to adaptively adjust the upper and lower bounds at runtime to overcome the drastically varying activation ranges over different samples.To reduce the extra overhead, the dynamic gate controller is quantized to 2-bit and applied to only part of the SR networks according to the introduced dynamic intensity. Extensive experiments demonstrate that our DDTB exhibits significant performance improvements in ultra-low precision. For example, our DDTB achieves a 0.70dB PSNR increase on Urban100 benchmark when quantizing EDSR to 2-bit and scaling up output images to x4. Code is at \url{https://github.com/zysxmu/DDTB}.