论文标题

六角铁素体的铁电性与非磁性不当之间的耦合

Coupling between improper ferroelectricity and ferrimagnetism in hexagonal ferrites

论文作者

Das, Hena

论文摘要

由自旋轨道耦合产生的抗对称Dzyaloshinskii-moriya(DM)相互作用诱导各种迷人的特性,例如磁电(ME)效应,弱铁磁作和非客气拓扑旋转式旋转纹理(如Skyrmions),在实际材料中。与它们的对称各向同性交换相比,这些相互作用通常具有较弱的强度顺序,从而在自旋结构中产生适度的扭曲,从而导致弱铁磁或弱线性ME效应。相比之下,我们提出的两种公共模型预测了迄今未观察到的指控,有序的非共线铁磁性行为,具有相当高的磁化$ \ textbf {m} $与铁电(Fe)的订单与电气极化$ \ fextbf {p} $ contim drime drime drim ate Atth the Atth thement drime dry dry的磁化;互动。意识到这些效果的关键是这些微观相互作用与Fe主要阶参数之间的耦合。我们预测微观机制可以实现电场$ \ textbf {e} $诱导的自旋纠纷过渡和180 $^{\ circ} $切换$ \ textbf {m} $的方向。该模型是在用电子掺杂的lufeo $ _3 $的六边形阶段实现的。该系统显示$ p \ sim $ 15 $ $ $ $ c/cm $^2 $,$ m \ sim $ 1.3 $μ_b$/fe和磁性过渡在室温附近($ \ sim $ 290 k)。我们的理论结果有望刺激进一步寻求能节能的途径,以控制用于旋转的应用的磁性。

Antisymmetric Dzyaloshinskii-Moriya (DM) interactions generating from the spin-orbit coupling induce various fascinating properties, like magnetoelectric (ME) effect, weak ferromagnetism and non-trivial topological spin textures like skyrmions, in real materials. Compared to their symmetric isotropic exchange counterpart, these interactions are generally of a weaker order of strength, creating modest twisting in the spin structure which results in weak ferromagntism or weak linear ME effect. Our proposed two-sublattice model, in contrast, predicts a hitherto unobserved, charge ordered non-collinear ferrimagnetic behavior with a considerably high magnetization $\textbf{M}$ coexisting with a ferroelectric (FE) order with an electric polarization $\textbf{P}$ and a strong cross coupling between them which is primarily driven by the inter-sublattice DM interactions. The key to realize these effects is the coupling between these microscopic interactions and the FE primary order parameter. We predict microscopic mechanisms to achieve electric field $\textbf{E}$ induced spin-reorientation transitions and 180$^{\circ}$ switching of the direction of $\textbf{M}$. This model was realized in the hexagonal phase of LuFeO$_3$ doped with electrons. This system shows $P \sim$ 15 $μ$C/cm$^2$, $M \sim$ 1.3 $μ_B$/Fe and magnetic transition near room temperature ($\sim$ 290 K). Our theoretical results are expected to stimulate further quest for energy-efficient routes to control magnetism for spintronics applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源