论文标题
关于稳定转移因子的定义
On the definition of stable transfer factors
论文作者
论文摘要
我们定义了稳定的几何和光谱传递因子,并开发了其一些基本特性。使用我们对稳定的几何传递因子的定义,我们表明轨道积分的稳定转移猜想意味着字符的稳定转移,反之亦然。后者也暗示了当地兰兰兹猜想的基本形式,尤其是在阿基米德案中建立了稳定的转移。此外,我们介绍了原始分布的概念,并为稳定的痕量公式中发生的局部几何和光谱分布提出了猜想的转移身份,这是通过启发性的。
We define stable geometric and spectral transfer factors and develop some of their basic properties. Using our definition of stable geometric transfer factors, we show that the stable transfer conjecture for orbital integrals implies the stable transfer of characters and vice versa. The latter is also implied by a basic form of the local Langlands conjecture, and in particular establishes stable transfer in the archimedean case. Moreover, we introduce a notion of primitive distributions and formulate conjectural transfer identities for the local geometric and spectral distributions that occur in the stable trace formula, suggested by primitisation.