论文标题
弯曲的域壁费米
Curved domain-wall fermions
论文作者
论文摘要
我们考虑在具有弯曲域壁的质量术语的方格上的fermion系统。与传统的平坦壁壁费米子类似,墙上出现了无质量和手性边缘状态。在$ s^1 $和$ s^2 $域壁嵌入到平坦的高皮块晶格中的情况下,我们发现这些边缘模式通过诱导的旋转或旋转$^c $连接而感到重力。重力效应被编码在Dirac特征值光谱中,作为零的间隙。在平方晶格的标准连续性推断中,我们发现与连续理论中的分析预测有很好的一致性。我们还发现,边缘模式的旋转对称性会在连续限制中自动恢复。
We consider fermion systems on a square lattice with a mass term having a curved domain-wall. Similarly to the conventional flat domain-wall fermions, massless and chiral edge states appear on the wall. In the cases of $S^1$ and $S^2$ domain-walls embedded into flat hypercubic lattices, we find that these edge modes feel gravity through the induced Spin or Spin$^c$ connections. The gravitational effect is encoded in the Dirac eigenvalue spectrum as a gap from zero. In the standard continuum extrapolation of the square lattice, we find a good agreement with the analytic prediction in the continuum theory. We also find that the rotational symmetry of the edge modes is automatically recovered in the continuum limit.