论文标题

弯曲的域壁费米

Curved domain-wall fermions

论文作者

Aoki, Shoto, Fukaya, Hidenori

论文摘要

我们考虑在具有弯曲域壁的质量术语的方格上的fermion系统。与传统的平坦壁壁费米子类似,墙上出现了无质量和手性边缘状态。在$ s^1 $和$ s^2 $域壁嵌入到平坦的高皮块晶格中的情况下,我们发现这些边缘模式通过诱导的旋转或旋转$^c $连接而感到重力。重力效应被编码在Dirac特征值光谱中,作为零的间隙。在平方晶格的标准连续性推断中,我们发现与连续理论中的分析预测有很好的一致性。我们还发现,边缘模式的旋转对称性会在连续限制中自动恢复。

We consider fermion systems on a square lattice with a mass term having a curved domain-wall. Similarly to the conventional flat domain-wall fermions, massless and chiral edge states appear on the wall. In the cases of $S^1$ and $S^2$ domain-walls embedded into flat hypercubic lattices, we find that these edge modes feel gravity through the induced Spin or Spin$^c$ connections. The gravitational effect is encoded in the Dirac eigenvalue spectrum as a gap from zero. In the standard continuum extrapolation of the square lattice, we find a good agreement with the analytic prediction in the continuum theory. We also find that the rotational symmetry of the edge modes is automatically recovered in the continuum limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源