论文标题

Agrasst:用于解释的隐式图生成器的可解释评估的近似图形Stein统计信息

AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators

论文作者

Xu, Wenkai, Reinert, Gesine

论文摘要

我们提出和分析了一种新颖的统计程序,即创建的Agrasst,以评估可能以明确形式可用的图形生成器的质量。特别是,Agrasst可用于确定学习的图生成过程是否能够生成类似给定输入图的图。受到随机图的Stein运算符的启发,Agrasst的关键思想是基于从图生成器获得的运算符的内核差异的构建。 Agrasst可以为图形生成器培训程序提供可解释的批评,并帮助确定可靠的下游任务样本批次。使用Stein的方法,我们为广泛的随机图模型提供了理论保证。我们在两个合成输入图上提供了经验结果,并具有已知的图生成过程,以及对图形最新的(深)生成模型的现实输入图进行了训练。

We propose and analyse a novel statistical procedure, coined AgraSSt, to assess the quality of graph generators that may not be available in explicit form. In particular, AgraSSt can be used to determine whether a learnt graph generating process is capable of generating graphs that resemble a given input graph. Inspired by Stein operators for random graphs, the key idea of AgraSSt is the construction of a kernel discrepancy based on an operator obtained from the graph generator. AgraSSt can provide interpretable criticisms for a graph generator training procedure and help identify reliable sample batches for downstream tasks. Using Stein`s method we give theoretical guarantees for a broad class of random graph models. We provide empirical results on both synthetic input graphs with known graph generation procedures, and real-world input graphs that the state-of-the-art (deep) generative models for graphs are trained on.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源