论文标题
在火灾模拟中,恒星形成恒星的3D元素丰度
3D elemental abundances of stars at formation across the histories of Milky Way-mass galaxies in the FIRE simulations
论文作者
论文摘要
我们表征了[Fe/H],[mg/h]和[mg/h]和[mg/fe]在恒星形成时的3-D空间变化,跨越了11个模拟的银河系(MW)和Fire-2模拟中的M31-Mas-Mass星系,以告知化学标记初始条件的初始条件。星系内[Fe/H]中的总体散射随着时间的推移而减少,直到$ \ 7 $ gyr以前,之后它增加到了今天:这是由于方位角散射的减少与径向梯度陡峭的竞争而产生的。径向梯度通常为负,并且随着时间的流逝,它从最初平坦的梯度$ \ gtrsim 12 $ gyr浸泡。当今的丰度梯度的强度与磁盘“定居”时无关。取而代之的是,它最好与银河系中的径向速度分散相关。方位角变化的强度几乎独立于半径,而360度散射随着时间的推移从$ \ lyssim 0.17 $ dex at $ t _ {\ rm lb} = 11.6 $ gyr to $ \ sim 0.04 $ dex目前。因此,在$ t _ {\ rm lb} \ gtrsim 8 $ gyr的磁盘中形成的恒星在磁盘中形成,主要是具有丰度的方位角散射。全明星在垂直均匀的磁盘中形成,$δ$ [fe/h] $ \ leq 0.02 $ dex在银河中部平面的$ 1 $ kpc之内,除了内$ \ kpc中的年轻恒星在$ z \ sim \ sim 0 $中。这些结果通常与我们先前对气相元素丰度的分析一致,这增强了宇宙学磁盘进化和方位角散射的重要性。我们为我们的结果提供了分析拟合,以用于化学标记分析。
We characterize the 3-D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $\approx 7$ Gyr ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $\gtrsim 12$ Gyr ago. The strength of the present-day abundance gradient does not correlate with when the disk `settled'; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 degree scatter decreased over time, from $\lesssim 0.17$ dex at $t_{\rm lb} = 11.6$ Gyr to $\sim 0.04$ dex at present day. Consequently, stars at $t_{\rm lb} \gtrsim 8$ Gyr formed in a disk with primarily azimuthal scatter in abundances. All stars formed in a vertically homogeneous disk, $Δ$[Fe/H] $\leq 0.02$ dex within $1$ kpc of the galactic midplane, with the exception of the young stars in the inner $\approx 4$ kpc at $z \sim 0$. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disk evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses.