论文标题
部分可观测时空混沌系统的无模型预测
Tensors and Algebras: An Algebraic Spacetime Interpretation for Tensor Models
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The quest for a consistent theory for quantum gravity is one of the most challenging problems in theoretical high-energy physics. An often-used approach is to describe the gravitational degrees of freedom by the metric tensor or related variables, and finding a way to quantise this. In the canonical tensor model, the gravitational degrees of freedom are encoded in a tensorial quantity $P_{abc}$, and this quantity is subsequently quantised. This makes the quantisation much more straightforward mathematically, but the interpretation of this tensor as a spacetime is less evident. In this work we take a first step towards fully understanding the relationship to spacetime. By considering $P_{abc}$ as the generator of an algebra of functions, we first describe how we can recover the topology and the measure of a compact Riemannian manifold. Using the tensor rank decomposition, we then generalise this principle in order to have a well-defined notion of the topology and geometry for a large class of tensors $P_{abc}$. We provide some examples of the emergence of a topology and measure of both exact and perturbed Riemannian manifolds, and of a purely algebraically-defined space called the semi-local circle.