论文标题

高质量调度的固定参数算法的指数更快

Exponentially faster fixed-parameter algorithms for high-multiplicity scheduling

论文作者

Fischer, David, Golak, Julian, Mnich, Matthias

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider so-called $N$-fold integer programs (IPs) of the form $\max\{c^T x : Ax = b, \ell \leq x \leq u, x \in \mathbb Z^{nt}\}, where $A \in \mathbb Z^{(r+sn)\times nt} consists of $n$ arbitrary matrices $A^{(i)} \in \mathbb Z^{r\times t}$ on a horizontal, and $n$ arbitrary matrices $B^{(j)} \in \mathbb Z^{s\times t} on a diagonal line. Several recent works design fixed-parameter algorithms for $N$-fold IPs by taking as parameters the numbers of rows and columns of the $A$- and $B$-matrices, together with the largest absolute value $Δ$ over their entries. These advances provide fast algorithms for several well-studied combinatorial optimization problems on strings, on graphs, and in machine scheduling. In this work, we extend this research by proposing algorithms that additionally harness a partition structure of submatrices $A^{(i)}$ and $B^{(j)}$, where row indices of non-zero entries do not overlap between any two sets in the partition. Our main result is an algorithm for solving any $N$-fold IP in time $nt log(nt)L^2(S_A)^{O(r+s)}(p_Ap_BΔ)^{O(rp_Ap_B+sp_Ap_B)}$, where $p_A$ and $p_B$ are the size of the largest set in such a partition of $A^{(i)}$ and $B^{(j)}$, respectively, $S_A$ is the number of parts in the partition of $A = (A^{(1)},..., A^{(n)}), and $L = (log(||u - \ell||_\infty)\cdot (log(max_{x:\ell \leq x \leq u} |c^Tx|))$ is a measure of the input. We show that these new structural parameters are naturally small in high-multiplicity scheduling problems, such as makespan minimization on related and unrelated machines, with and without release times, the Santa Claus objective, and the weighted sum of completion times. In essence, we obtain algorithms that are exponentially faster than previous works by Knop et al. (ESA 2017) and Eisenbrand et al./Kouteck{ý} et al. (ICALP 2018) in terms of the number of job types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源