论文标题

对称作为拓扑顺序的阴影和拓扑全息原理的衍生

Symmetry as a shadow of topological order and a derivation of topological holographic principle

论文作者

Chatterjee, Arkya, Wen, Xiao-Gang

论文摘要

通常通过(较高)组描述的转换来定义对称性。但是对称性确实对应于局部对称运算符的代数,该代数直接限制了系统的属性。在本文中,我们指出,局部对称运算符的代数包含一类特殊的扩展运算符 - 透明的贴片操作员,该操作员揭示了选择扇区,从而揭示了相应的对称性。这些透明补丁操作员在$ n $维空间中的代数产生了一个非分组编织的融合$ n $ - 类别,恰好在一个更高的维度中描述拓扑顺序(用于有限的对称性)。这样的全息理论不仅描述了(较高)对称性,还描述了异常(较高)对称性,不可固化(较高)对称性(也称为代数较高的对称性)和不可逆转的引力异常。因此,一个更高维度的拓扑顺序替换组,对上述广义对称性提供了统一的系统描述。这是指对称/拓扑阶(SYMM/TO)对应关系。我们的方法还导致了拓扑全息原理的推导:\ emph {界限唯一决定了批量},或更确切地说,局部边界运算符的代数唯一决定了整体拓扑顺序。作为对信号的应用,我们显示了$ \ mathbb {z} _2 \ times \ times \ times \ mathbb {z} _2 $对称性与混合异常的对称性与$ \ mathbb {z} _4 $对称性,以及在许多其他符号之间,以及在1二维空间中,以及在1二维之间。

Symmetry is usually defined via transformations described by a (higher) group. But a symmetry really corresponds to an algebra of local symmetric operators, which directly constrains the properties of the system. In this paper, we point out that the algebra of local symmetric operators contains a special class of extended operators -- transparent patch operators, which reveal the selection sectors and hence the corresponding symmetry. The algebra of those transparent patch operators in $n$-dimensional space gives rise to a non-degenerate braided fusion $n$-category, which happens to describe a topological order in one higher dimension (for finite symmetry). Such a holographic theory not only describes (higher) symmetries, it also describes anomalous (higher) symmetries, non-invertible (higher) symmetries (also known as algebraic higher symmetries), and non-invertible gravitational anomalies. Thus, topological order in one higher dimension, replacing group, provides a unified and systematic description of the above generalized symmetries. This is referred to symmetry/topological-order (Symm/TO) correspondence. Our approach also leads to a derivation of topological holographic principle: \emph{boundary uniquely determines the bulk}, or more precisely, the algebra of local boundary operators uniquely determines the bulk topological order. As an application of the Symm/TO correspondence, we show the equivalence between $\mathbb{Z}_2\times \mathbb{Z}_2$ symmetry with mixed anomaly and $\mathbb{Z}_4$ symmetry, as well as between many other symmetries, in 1-dimensional space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源