论文标题

全部欧拉方程的孤立波的波稳定性

The wave stability of solitary waves over a bump for the full Euler equations

论文作者

Flamarion, Marcelo V., Ribeiro-Jr, Roberto

论文摘要

在这项工作中,我们介绍了通过完整的Euler方程在局部地形障碍物上稳定孤立波的波稳定性的数值研究。解决方案有两个分支:一个分支来自扰动的均匀流,另一个来自扰动的孤立波流。我们发现,相对于其振幅的扰动,来自扰动均匀流的稳定波总是稳定的。关于扰动的孤立波,当扰动的初始条件的振幅小于稳定的解决方案时,我们会注意到某种类型的稳定性。然而,当扰动的初始条件的振幅比稳定的溶液具有更大的幅度时,似乎会发生波浪破裂。

In this work, we present a numerical study of the wave stability of steady solitary waves over a localised topographic obstacle through the full Euler equations. There are two branches of the solutions: one from the perturbed uniform flow and the other from the perturbed solitary-wave flow. We find that steady waves from the perturbed uniform flow are always stable with respect to perturbations of its amplitude. Regarding the perturbed solitary-wave, when the perturbed initial condition has smaller amplitude than the steady solution we notice a certain type of stability. Yet, when the perturbed initial condition has larger amplitude than the steady solution an onset of wave-breaking seem to occur.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源