论文标题
边缘收缩和禁止诱导的图
Edge Contraction and Forbidden Induced Graphs
论文作者
论文摘要
图$ g $是$ h $ - 如果$ v(g)$的任何子集不会引起$ g $的子图,这是同构成$ h $的。给定图$ h $,我们为图$ g $提供足够和必要的条件,以使$ g/e $ $ $ h $ - $ h $ - $ e $ in $ e(g)$中的任何边缘$ e $。此后,我们使用这些条件来表征森林,无爪,$ 2k_ {2} $ - 免费,$ c_ {4} $ - 免费,$ c_ {5} $ - 免费,拆分和伪分布图。
A graph $G$ is $H$-free if any subset of $V(G)$ does not induce a subgraph of $G$ that is isomorphic to $H$. Given a graph $H$, we present sufficient and necessary conditions for a graph $G$ such that $G/e$ is $H$-free for any edge $e$ in $E(G)$. Thereafter, we use these conditions to characterize forests, claw-free, $2K_{2}$-free, $C_{4}$-free, $C_{5}$-free, split, and pseudo-split graphs.