论文标题

使用金字塔和语义注意力迈向公正的多标签零射击学习

Towards Unbiased Multi-label Zero-Shot Learning with Pyramid and Semantic Attention

论文作者

Liu, Ziming, Guo, Song, Guo, Jingcai, Xu, Yuanyuan, Huo, Fushuo

论文摘要

多标签零射击学习将常规的单标签零击学习扩展到更现实的场景,旨在识别每个输入样本的多个看不见的类标签。现有作品通常利用注意机制在不同标签之间产生相关性。但是,其中大多数通常在几个主要类别上有偏见,而在输入样本中忽略了大多数次要类别,因此可能导致无法充分覆盖次要类别的过度分散注意力图。我们认为,无视主要阶级和次要类之间的联系,即分别与全球和本地信息相对应,这是问题的原因。在本文中,我们通过考虑各种特定于类的区域来校准分类器的训练过程,提出了一个新颖的多标签零照片学习框架。具体而言,提出了金字塔特征注意(PFA)来建立样本的全球和局部信息之间的相关性,以平衡每个类的存在。同时,对于输入样本的生成的语义表示,我们提出了语义注意(SA)来加强这些向量之间的元素相关性,这可以鼓励它们的协调表示。大规模多标签零射击基准NUS范围内和开放图像的广泛实验表明,所提出的方法超过了大量边缘的其他代表性方法。

Multi-label zero-shot learning extends conventional single-label zero-shot learning to a more realistic scenario that aims at recognizing multiple unseen labels of classes for each input sample. Existing works usually exploit attention mechanism to generate the correlation among different labels. However, most of them are usually biased on several major classes while neglect most of the minor classes with the same importance in input samples, and may thus result in overly diffused attention maps that cannot sufficiently cover minor classes. We argue that disregarding the connection between major and minor classes, i.e., correspond to the global and local information, respectively, is the cause of the problem. In this paper, we propose a novel framework of unbiased multi-label zero-shot learning, by considering various class-specific regions to calibrate the training process of the classifier. Specifically, Pyramid Feature Attention (PFA) is proposed to build the correlation between global and local information of samples to balance the presence of each class. Meanwhile, for the generated semantic representations of input samples, we propose Semantic Attention (SA) to strengthen the element-wise correlation among these vectors, which can encourage the coordinated representation of them. Extensive experiments on the large-scale multi-label zero-shot benchmarks NUS-WIDE and Open-Image demonstrate that the proposed method surpasses other representative methods by significant margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源