论文标题
可扩展的多代理增强学习,用于分布式控制住宅能源灵活性
Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility
论文作者
论文摘要
本文提出了一种基于分布式住宅能源的新型多代理增强学习协调。合作的代理商学会控制电动汽车提供的灵活性,在部分可观察到的随机环境中的空间加热和柔性载荷。在标准的独立Q学习方法中,在随机环境中,部分可观察性下的代理的协调性能下降。在这里,从离线凸优化的历史数据和隔离奖励信号总奖励的边际贡献的新型组合可以提高稳定性和表现。使用固定尺寸的Q-表,生产商能够评估其对整个系统目标的边际影响,而无需相互共享或与中央协调员共享个人数据。案例研究用于评估勘探来源,奖励定义和多学院学习框架的不同组合的适应性。事实证明,由于能源进口,损失,分销网络拥塞,电池折旧和温室气体排放的成本降低,提出的策略在个人和系统水平上创造价值。
This paper proposes a novel scalable type of multi-agent reinforcement learning-based coordination for distributed residential energy. Cooperating agents learn to control the flexibility offered by electric vehicles, space heating and flexible loads in a partially observable stochastic environment. In the standard independent Q-learning approach, the coordination performance of agents under partial observability drops at scale in stochastic environments. Here, the novel combination of learning from off-line convex optimisations on historical data and isolating marginal contributions to total rewards in reward signals increases stability and performance at scale. Using fixed-size Q-tables, prosumers are able to assess their marginal impact on total system objectives without sharing personal data either with each other or with a central coordinator. Case studies are used to assess the fitness of different combinations of exploration sources, reward definitions, and multi-agent learning frameworks. It is demonstrated that the proposed strategies create value at individual and system levels thanks to reductions in the costs of energy imports, losses, distribution network congestion, battery depreciation and greenhouse gas emissions.