论文标题

在欧几里得拓扑的Hausdorff量子

On the Hausdorff Measure of $\R^n$ with the Euclidean Topology

论文作者

Bagnara, Marco, Gennaioli, Luca, Leccese, Giacomo Maria, Luongo, Eliseo

论文摘要

在本文中,我们回答了大卫·H·弗里姆林(David H.特别是,我们证明,当考虑诱导欧几里得拓扑的距离时,$ \ mathbb {r}^n $的Hausdorff $ n $维度度量绝不是$ 0 $。最后,我们通过反例表明,如果我们删除对拓扑的假设,则先前的结果一般不会得出。

In this paper we answer a question raised by David H. Fremlin about the Hausdorff measure of $\mathbb{R}^2$ with respect to a distance inducing the Euclidean topology. In particular we prove that the Hausdorff $n$-dimensional measure of $\mathbb{R}^n$ is never $0$ when considering a distance inducing the Euclidean topology. Finally, we show via counterexamples that the previous result does not hold in general if we remove the assumption on the topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源