论文标题
在雨中切换:预测无线X-Haul网络重新配置
Switching in the Rain: Predictive Wireless x-haul Network Reconfiguration
论文作者
论文摘要
无线X-Haul网络依赖于4G和/或5G基站之间的微波炉和毫米波连接,以支持超高数据速率和超低潜伏期。与这些高频联系相关的主要挑战是它们对天气状况的敏感性。特别是,降水可能会导致严重的信号衰减,从而大大降低网络性能。在本文中,我们开发了一个预测网络重新配置(PNR)框架,该框架使用历史数据来预测每个链接的未来状况,然后提前准备网络以解决即将发生干扰。 PNR框架有两个组成部分:(i)衰减预测(AP)机制; (ii)多步网络重新配置(MSNR)算法。 AP机制采用编码器码数长期记忆(LSTM)模型来预测每个链接的未来衰减水平的顺序。 MSNR算法利用这些预测来动态优化旨在最大化网络利用率的路由和接收控制决策,同时在共享网络的基础站之间保留最大的最大公平性,并防止通过重新路由引起的瞬时拥堵。我们使用包含从现实世界中的城市规模的回程网络收集的200万个测量值的数据集训练,验证和评估PNR框架。结果表明,框架:(i)以高精度预测衰减,RMSE小于0.4 dB,预测范围为50秒; (ii)与无法利用有关未来干扰信息的反应性网络重新配置算法相比,与反应性网络重新配置算法相比,瞬时网络利用率可以提高200%以上。
Wireless x-haul networks rely on microwave and millimeter-wave links between 4G and/or 5G base-stations to support ultra-high data rate and ultra-low latency. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the base-stations sharing the network and preventing transient congestion that may be caused by re-routing. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances.